Quantum Skyrmion Lattices

in Heisenberg Ferromagnets

Andreas Haller, Solofo Groenendijk, Alireza Habibi, Andreas Michels and Thomas L. Schmidt

Luxembourg City

Belval Campus

Outline

Introduction

  • Heisenberg vs. Dzyaloshinskii-Moriya vs. Zeeman
  • low energy configurations // phase diagram
  • Tensor Networks

  • matrix product states (MPS)
  • (time-dependent) variational principle
  • density matrix renormalization group
  • Quantum Spin Model

  • phase diagram
  • spin norm
  • entanglement
  • Classical Skyrmions

    • quasiparticles in non-centrosymmetric thin films
    • Heisenberg & Dzyaloshinskii-Moriya interaction
    • spin winding with quantized topological index
    • robust & long lifetimes: stable against disorder, high temperatures

    Quantum Skyrmions

    • quasiparticles in non-centrosymmetric thin films
    • Heisenberg & Dzyaloshinskii-Moriya interaction
    • topological witness (not quantized!)
    • more or less robust?
    • how much ''classical'' are the quantum states?

    Classical Spin Model

    \[ E = \overbrace{ J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} }^{\rm Heisenberg} + \overbrace{ \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} }^{\rm Dzyaloshinskii-Moriya} \\ \underbrace{ +\sum_{i}\bm B_{\bm r_i}\cdot\bm S_{\bm r_i} }_{\rm external\ Zeeman\ Field} \]

    Heisenberg

    \[ E_J(\{\bm S_{\bm r_i},\ i=1,...,N\}) = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} \]

    \(J > 0\)

    numerically find \(\min_{\{\bm S_{\bm r_i},\ i=1,...,N\}}E_J\)

    Heisenberg

    \[ E_J(\{\bm S_{\bm r_i},\ i=1,...,N\}) = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} \]

    \(J > 0\)

    numerically find \(\min_{\{\bm S_{\bm r_i},\ i=1,...,N\}}E_J\)

    Heisenberg

    \[ E_J(\{\bm S_{\bm r_i},\ i=1,...,N\}) = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} \]

    \(J < 0\)

    numerically find \(\min_{\{\bm S_{\bm r_i},\ i=1,...,N\}}E_J\)

    Heisenberg

    \[ E_J(\{\bm S_{\bm r_i},\ i=1,...,N\}) = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} \]

    \(J < 0\)

    \(J>0\)

    Dzyaloshinskii-Moriya (DM)

    \[ E_D(\{\bm S_{\bm r_i},\ i=1,...,N\}) = \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} \]

    \(\bm D_{\bm r_i,\bm r_j} = |D|\hat e_z\times(\bm r_j-\bm r_i)\)

    DM vs. Heisenberg

    \[ E_{J,D} = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} + \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} \]

    \(\bm D_{\bm r_i,\bm r_j} = |D|\hat e_z\times(\bm r_j-\bm r_i)\)

    DM vs. Heisenberg

    \[ E_{J,D} = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} + \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} \]

    \(\bm D_{\bm r_i,\bm r_j} = |D|\hat e_z\times(\bm r_j-\bm r_i)\)

    DM vs. Heisenberg

    \[ E_{J,D} = J \sum_{\braket{i,j}} \bm S_{\bm r_i}\cdot\bm S_{\bm r_j} + \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} \]

    How to get a domain of locally flipped spins in 2D?

    DM vs. Heisenberg vs. Zeeman

    \[ E_{J,B,D} = E_{J,D} + \sum_{\bm r}\bm B_{\bm r}\cdot\bm S_{\bm r} \]

    $ J = -0.5|D| $

    DM vs. Heisenberg vs. Zeeman

    Tensor Networks

    Matrix Product States (MPS)

    $\psi_{i_1,i_2,...,i_N} = {\rm tr}\left(\prod_n A^{(i_n)}_{n}\right)$

    • representation of generic wavefunctions
    • faithful simulation of ground and excited states
    • allows investigating dynamics or open systems

    Matrix Product States (MPS)

    \[ \ket{\psi} = \sum_{\bm i}\psi_{i_1,i_2,...,i_N}\ket{i_1,i_2,...,i_N}\\ = \sum_{\bm i}{\rm tr}\left(\prod_n A^{(i_n)}_{n}\right)\ket{i_1,i_2,...,i_N} \]

    Matrix Product States (MPS)

    \[ \ket{\psi} = \sum_{\bm i}{\rm tr}\left(\prod_n A^{(i_n)}_{n}\right)\ket{i_1,i_2,...,i_N} \]

    \[ \hat O = \sum_{j,j'}O_{j',j}\ket{j'}\bra{j} \]

    Matrix Product States (MPS)

    \[ \hat O_{q}\ket{\psi} = {\rm tr}\left(\prod_n A^{(i_n)}_{n}\right)O_{j_q',j_q}\ket{j_q'}\braket{j_q|i_1,i_2,...,i_N}\\ = {\rm tr}\left(\prod_n A^{(i_n)}_{n}\right)O_{j_q',i_q}\ket{i_1,i_2,...,j_q',...,i_N} \]

    • operators change the wavefunction
    • operators transform the MPS matrices

    Matrix Product States (MPS)

    • operators transform the MPS matrices
    • leads to matrix product operators (MPO)
    • efficient computation of the MPS energy

    Matrix Product States (MPS)

    • operators transform the MPS matrices
    • leads to matrix product operators (MPO)
    • efficient computation of the MPS energy

    Density matrix renormalization group

    • variational principle $ E_{\rm GS} = \min_{\psi}\braket{\psi|H|\psi} $
    • $ \mathcal L = \braket{\psi|H|\psi} - \lambda(\braket{\psi|\psi}-1) $
    • solve the equations of motion for each tensor $A^{(i_n)}_n$

    MPS Tutorial (GitHub) Quantum Skyrmions (GitHub) Phys. Rev. Lett. 69, 2863 (1992) SciPost Phys. Lect. Notes 8 (2019) Annals of Physics 411, 167998 (2019) ITensor (Fishman,White) TeNPy (Hauschild,Pollmann)

    Density matrix renormalization group

    • map 2D system to 1D
    • perform DMRG in time $T\propto\mathcal O(M^3)$
    • measure observables

    Quantum Spin $1/2$ Model

    \[ \rlap{$E$}\phantom{\hat H} = \overbrace{ J \sum_{\bm r, \bm r'} \bm S_{\bm r}\cdot\bm S_{\bm r'} }^{\rm Heisenberg} + \overbrace{ \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\bm S_{\bm r_i}\times\bm S_{\bm r_j} }^{\rm Dzyaloshinskii-Moriya} \\ \underbrace{ +\sum_{\bm r}\bm B_{\bm r}\cdot\bm S_{\bm r} }_{\rm external\ Zeeman\ Field} \quad \phantom{ \underbrace{ + K \sum_{\bm r}\hat{S}_{z,\bm r}\hat{S}_{z,\bm r} }_{\rm uniaxial\ anisotropy} } \]

    Quantum Spin $1/2$ Model

    \[ \hat H = \overbrace{ J \sum_{\bm r, \bm r'} \hat{\bm S}_{\bm r}\cdot\hat{\bm S}_{\bm r'} }^{\rm Heisenberg} + \overbrace{ \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\hat{\bm S}_{\bm r_i}\times\hat{\bm S}_{\bm r_j} }^{\rm Dzyaloshinskii-Moriya} \\ \underbrace{ +\sum_{\bm r}\bm B_{\bm r}\cdot\hat{\bm S}_{\bm r} }_{\rm external\ Zeeman\ Field} \phantom{ \quad \underbrace{ + K \sum_{\bm r}\hat{S}_{z,\bm r}\hat{S}_{z,\bm r} }_{\rm uniaxial\ anisotropy} } \]

    Quantum Spin $1/2$ Model

    \[ \hat H = \overbrace{ J \sum_{\bm r, \bm r'} \hat{\bm S}_{\bm r}\cdot\hat{\bm S}_{\bm r'} }^{\rm Heisenberg} + \overbrace{ \sum_{\braket{i,j}} \bm D_{\bm r_i,\bm r_j}\cdot\hat{\bm S}_{\bm r_i}\times\hat{\bm S}_{\bm r_j} }^{\rm Dzyaloshinskii-Moriya} \\ \underbrace{ +\sum_{\bm r}\bm B_{\bm r}\cdot\hat{\bm S}_{\bm r} }_{\rm external\ Zeeman\ Field} \quad \underbrace{ + K \sum_{\bm r}\hat{S}_{z,\bm r}\hat{S}_{z,\bm r} }_{\rm uniaxial\ anisotropy} \]

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B=0.1|D|$
    $B=0.5|D|$
    $B=1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    fix $J/|D|=-0.5$, ground states for varying $B/|D|$

    $B = -0.1|D|$
    $B = -0.5|D|$
    $B = -1.0|D|$

    Quantum Spin Model

    norm of the spin expectation value

    Quantum Spin Model

    average magnetization and entanglement entropy

    \[ \overline m_z = \sum_n \braket{\hat S_{z,n}}/N\\ S = - {\rm tr}\hat \rho_A \ln \hat\rho_A\\ \hat\rho_A = {\rm tr}_{A^c}\hat\rho \]

    Quantum Spin Model

    $J=-0.5|D|$

    quantum Skyrmion phase more robust against $B$

    Quantum Spin Model

    For spin $s=1/2$: quantum skyrmion lattices

    Quantum Spin Model

    For spin $s=1/2$: quantum skyrmion lattices

    Quantum Spin Model

    For spin $s=1/2$: quantum skyrmion lattices

    Quantum Spin Model

    For spin $s=1/2$: quantum skyrmion lattices

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    \[ C = |\braket{\psi|\tilde\psi}|\\ \ket{\tilde\psi} = \sigma_y\otimes\sigma_y\ket{\psi^*} \] e.g. \[ \ket{\psi} = 1/{\sqrt2}\left(\ket{\uparrow\downarrow}+\ket{\downarrow\uparrow}\right)\\ C = 1 \]
    Phys. Rev. Lett. 80, 2245 (1998)

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    \[ C = |\braket{\psi|\tilde\psi}|\\ \ket{\tilde\psi} = \sigma_y\otimes\sigma_y\ket{\psi^*} \] e.g. \[ \ket{\psi} = \vphantom{\sqrt2}\ket{\uparrow\uparrow}\\ C = 0 \]
    Phys. Rev. Lett. 80, 2245 (1998)

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    \[ C_{\bm r_1, \bm r_2} = {\rm max}\left\{0, \lambda_1-\lambda_2-\lambda_3-\lambda_4 \right\}\\ \lambda_i > \lambda_{i+1},\ \lambda\in\sigma(R_{\bm r_1, \bm r_2}) \] \[ R_{\bm r_1, \bm r_2} = (\sigma_y\otimes\sigma_y)\rho^*_{\bm r_1,\bm r_2}(\sigma_y\otimes\sigma_y)\\ \rho_{\bm r_1, \bm r_2,\alpha,\beta} = \braket{\hat \sigma_{\bm r_1}^\alpha\hat \sigma_{\bm r_1}^\beta} \]
    Phys. Rev. Lett. 80, 2245 (1998)

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    $B=-0.1|D|$
    $B=-0.5|D|$
    $B=-1.0|D|$

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    $1^{\rm st}\ \rm n.n.$
    $2^{\rm nd}\ \rm n.n.$
    $3^{\rm rd}\ \rm n.n.$

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    $1^{\rm st}\ \rm n.n.$
    $2^{\rm nd}\ \rm n.n.$
    $3^{\rm rd}\ \rm n.n.$

    Quantum Spin Model

    Concurrence: measure for pair entanglement

    $1^{\rm st}\ \rm n.n.$
    $2^{\rm nd}\ \rm n.n.$
    $3^{\rm rd}\ \rm n.n.$

    Quantum Spin Model

    spin structure factors

    spin spiral
    skyrmion
    field polarized

    Quantum Spin Model

    neutron scattering cross section

    efficient DMRG simulations of quantum skyrmions

    quantum skyrmion lattice

    domain-wall entanglement

    smoking gun signature: spin norm & concurrence

    Perspectives

  • quantum skyrmion lattices from frustration?
  • quantum skyrmion liquids?
  • quantum skyrmion condensates?
  • quantum spintronics?
  • Acknowledgements

    Prof. Dr. Thomas Schmidt
    Prof. Dr. Andreas Michels
    Dr. Alireza Habibi & Dr. Solofo Groenendijk

    energy convergence

    magnetization convergence

    entanglement entropy

    magnetization and entropy

    spin norm hexagon

    classical low-$E$ spectrum